

氨含量测定试剂盒说明书

(货号: BP10007W 微板法 96样 有效期: 6个月)

一、指标介绍:

氨可由微生物蛋白质分解代谢产生,此外肝脏疾病也会影响氨水平。

本试剂盒利用氨在强碱的环境下与次氯酸盐和苯酚作用,生成水溶性染料靛酚蓝,溶液颜色稳定。 其在 630nm 处有特征吸收峰,吸光值与氨含量成正比。

二、试剂盒组分与配制:

试剂组分	试剂规格	存放温度	注意事项
提取液	液体 100mL×1 瓶	4℃保存	
试剂一	液体 6mL×1 瓶	4℃避光保存	
试剂二	液体 4mL×1 瓶	4℃保存	
试剂三	A: 液体 1.7mL×4 支 B: 液体 0.1mL×1 支	4℃避光保存	 临用前取 15 μ L 的 B 液进一支 A 液中,混匀后作为试剂三使用; 混匀后的试剂三一周内用完。
标准管	液体 2mL×1 支	4℃保存	1. 标品浓度为 10 μ g/mL 的氨; 2. 保存周期与试剂盒有效期相同。

三、实验器材:

研钵(匀浆机)、冰盒(制冰机)、台式离心机、可调式移液枪、水浴锅(烘箱、培养箱、金属浴)、 96 孔板、离心管、酶标仪、蒸馏水(去离子水、超纯水均可)。

四、指标测定:

建议先选取 1-3 个差异大的样本(例如不同类型或分组)进行预实验,熟悉操作流程,根据预实验结果确定或调整样本浓度,以防造成样本或试剂不必要的浪费!

1、样本提取:

① 液体样品:

澄清的液体可直接检测; 若浑浊则离心后取上清液检测。

② 组织样本:

取约 0.1g 组织样本,加 1mL 的提取液研磨,粗提液全部转移到 EP 管中,12000rpm,

常温离心 10min, 上清液待测。

【注】: 若增加样本量,可按照组织质量(g):提取液体积(mL)为1:5~10的比例进行提取。

③ 细菌/细胞样本:

先收集细菌或细胞到离心管内,离心后弃上清;取约 500 万细菌或细胞加入 1mL 提取液,超声波破碎细菌或细胞(冰浴,功率 200W,超声 3s,间隔 10s,重复 30 次); 12000rpm 4℃ 离心 <math>10min,取上清,置冰上待测。

【注】: 若增加样本量,可按照细菌/细胞数量(10^4): 提取液(mL)为 $500\sim1000$: 1 的比例进行提取。

2、检测步骤:

- ① 酶标仪预热 30min, 设置温度在 37℃, 设定波长到 630nm。
- ② 所有试剂解冻至室温, 在96孔板中依次加入:

→ 対4日 △ (T)	测定管	标准管	空白管
试剂组分 (μL) 		(仅做一次)	(仅做一次)
样本	15		
标准品		15	
蒸馏水	45	45	60

网址: www.bpelisa.com

试剂一	60	60	60
试剂二	30	30	30
试剂三	60	60	60

混匀, 37 度放置 20min,于 630nm 处读取 A, ΔA=A 测定-A 空白。

【注】: 1. 试剂一和二和三需分开加,不能事先混匀。

- 2. 测定管的 A 值若超过 1, 可把样本用蒸馏水进行稀释, 稀释倍数 D 代入计算公式。
- 3. 若 $\triangle A$ 的差值在零附近徘徊,可增加样本加样量 V1(如增至 $30\mu L$,则蒸馏水相应减少,保持总体积不变),则改变后的 V1 需代入公式重新计算。

五、结果计算:

1、按液体体积计算:

氨含量(
$$\mu$$
g/mL)=($C_{_{\overline{k}\pi^{\sharp}}}$ × $V_{_{\overline{k}}}$)× Δ A÷($A_{_{\overline{k}\pi^{\sharp}}}$ -A $_{_{\underline{\circ}\underline{\circ}\underline{\circ}}}$)÷ V 1×D
$$=10\times\Delta$$
A÷($A_{_{\overline{k}\pi^{\sharp}}}$ -A $_{_{\underline{\circ}\underline{\circ}\underline{\circ}}}$)×D氨含量(μ mol/L)=($C_{_{\overline{k}\pi^{\sharp}}}$ × $V_{_{\overline{k}}}$)× Δ A÷($A_{_{\overline{k}\pi^{\sharp}}}$ -A $_{_{\underline{\circ}\underline{\circ}\underline{\circ}}}$)÷ V 1×D×10³÷Mr

2、按样本鲜重计算:

氨含量(
$$\mu$$
g/g)=($C_{\kappa_{\#}} \times V_{\kappa}$)× $\Delta A \div (A_{\kappa_{\#}} - A_{\alpha_{\Theta}}) \div (W \times V1 \div V) \times D$
= $10 \times \Delta A \div (A_{\kappa_{\#}} - A_{\alpha_{\Theta}}) \div W \times D$

 $=555.6\times\Delta A \div (A_{\text{kil}}-A_{\text{ph}})\times D$

3、按细菌/细胞数量计算:

氨含量(
$$\mu$$
g/ 10^4 cell)=($C_{\pi_{\ell}} \times V_{\pi}$)× Δ A÷($A_{\pi_{\ell}}$ -A $_{\Xi_{\theta}}$)÷($500 \times V1$ ÷ V)×D= $0.02 \times \Delta$ A÷($A_{\pi_{\ell}}$ -A $_{\Xi_{\theta}}$)×D

4、按样本蛋白浓度计算:

氨含量(
$$\mu$$
g/mg prot)=($C_{k_{\#}} \times V_{k_{\#}}$)× $\Delta A \div (A_{k_{\#}} - A_{2e}) \div (Cpr \times V1 \div V) \times D$
= $10 \times \Delta A \div (A_{k_{\#}} - A_{2e}) \div Cpr \times D$

C 标准---标品浓度为 $10\mu g/mL$ 的氨; V_{*} ---标准品加样体积, 0.015mL;

V1---加入样本体积, 0.015mL; V---提取液体积, 1mL; W---取样质量; 500---细胞数量, 百万;

Mr---氨分子量, 18; D---稀释倍数, 未稀释即为 1。

Cpr---蛋白浓度(mg/mL);建议使用本公司的BCA蛋白含量检测试剂盒。

网址: www.bpelisa.com